46 research outputs found

    PLA2G6-associated neurodegeneration (PLAN): Characterization of patients and drug screening

    Get PDF
    Neurodegeneration with brain iron accumulation (NBIA) envolve a group of rare neurodegenerative disorders characterized by brain iron accumulation, progressive extrapyramidal dysfunction (dystonia, stiffness, choreoathetosis), and presence of axonal spheroids, usually limited by the central nervous system.   Within the differents subtypes of NBIA, in this study we focussed in PLA2G6-associated neurodegeneration (PLAN), diseases caused by a mutation in the phospholipase A2 group VI (PLA2G6). PLA2G6 encodes the enzyme iPLA2b, a calcium-independent phospholipase A2 which is involved in lipid metabolism. The loss of iPLA2b’s function result in mitochondrial abnormalities and synaptic transmission impairment in neurons among other alterations.   In the current work we studied the pathophysiology of three confirmed cases of PLAN using fibroblasts derived from the patients: PLAN 10 (heterozygous mutation), PLAN 11(heterozygous mutation) and PLAN 8 (homozygous mutation). The aim of this study is to characterize, in patient-derived fibroblasts, the pathological alterations produced by PLA2G6 mutations. Main methods used were Western blot and Prussian Blue Staining. Our results confirm iron accumulation in patients-derived fibroblasts, impaired autophagy and ferritinophagy, especially in the patient that suffers the homozygous mutation (Plan 8). The purpose is to carry out a drug screening able to reverse the pathophysiology observed

    Generation of three human iPSC lines from PLAN (PLA2G6-associated neurodegeneration) patients

    Get PDF
    Neurodegeneració; MutacióNeurodegeneración; MutaciónNeurodegeneration; MutationThe human iPSC cell lines, PLANFiPS1-Sv4F-1 (RCPFi004-A), PLANFiPS2-Sv4F-1 (RCPFi005-A), PLANFiPS3-Sv4F-1 RCPFi006-A), derived from dermal fibroblast from three patients suffering PLAN (PLA2G6-associated neurodegeneration; MIM 256600) caused by mutations in the PLA2G6 gene, was generated by non-integrative reprogramming technology using OCT3/4, SOX2, CMYC and KLF4 reprogramming factors. The pluripotency was assessed by immunocytochemistry and RT-PCR. Differentiation capacity was verified in vitro. This iPSC line can be further differentiated toward affected cells to better understand molecular mechanisms of disease and pathophysiology.This work was supported by the Instituto de Salud Carlos III (ISCIII) - Subdirección General de Evaluación y Fomento de la Investigación [PI18/00147to CE and PI18/01319 to BPD], and by the Generalitat Valenciana [PROMETEO/2018/135], within the framework of the National R + D + I Plan co-funded with ERDF funds. CM has a CIPF-PhD fellowship [P.I.06/2017]. Part of the equipment employed in this work has been funded by Generalitat Valenciana and co-financed with ERDF funds (OP ERDF of Comunitat Valenciana 2014–2020)

    Therapeutic approach with commercial supplements for pantothenate kinase-associated neurodegeneration with residual PANK2 expression levels

    Get PDF
    [Background]: Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain characterized by progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. Pantothenate kinase-associated neurodegeneration (PKAN) is one of the most widespread NBIA subtypes. It is caused by mutations in the gene of pantothenate kinase 2 (PANK2) that result in dysfunction in PANK2 enzyme activity, with consequent deficiency of coenzyme A (CoA) biosynthesis, as well as low levels of essential metabolic intermediates such as 4′-phosphopantetheine, a necessary cofactor for essential cytosolic and mitochondrial proteins. [Methods]: In this manuscript, we examined the therapeutic effectiveness of pantothenate, panthetine, antioxidants (vitamin E and omega 3) and mitochondrial function boosting supplements (L-carnitine and thiamine) in mutant PANK2 cells with residual expression levels. [Results]: Commercial supplements, pantothenate, pantethine, vitamin E, omega 3, carnitine and thiamine were able to eliminate iron accumulation, increase PANK2, mtACP, and NFS1 expression levels and improve pathological alterations in mutant cells with residual PANK2 expression levels. [Conclusion]: Our results suggest that several commercial compounds are indeed able to significantly correct the mutant phenotype in cellular models of PKAN. These compounds alone or in combinations are of common use in clinical practice and may be useful for the treatment of PKAN patients with residual enzyme expression levels.This work was supported by FIS PI16/00786 and PI19/00377 grants, Instituto de Salud Carlos III, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), Proyectos de Investigación de Excelencia de la Junta de Andalucía CTS-5725 and PY18-850

    Pantothenate and L-Carnitine supplementation improves pathological alterations in cellular models of KAT6A syndrome

    Get PDF
    Mutations in several genes involved in the epigenetic regulation of gene expression have been considered risk alterations to different intellectual disability (ID) syndromes associated with features of autism spectrum disorder (ASD). Among them are the pathogenic variants of the lysine-acetyltransferase 6A (KAT6A) gene, which causes KAT6A syndrome. The KAT6A enzyme participates in a wide range of critical cellular functions, such as chromatin remodeling, gene expression, protein synthesis, cell metabolism, and replication. In this manuscript, we examined the pathophysiological alterations in fibroblasts derived from three patients harboring KAT6A mutations. We addressed survival in a stress medium, histone acetylation, protein expression patterns, and transcriptome analysis, as well as cell bioenergetics. In addition, we evaluated the therapeutic effectiveness of epigenetic modulators and mitochondrial boosting agents, such as pantothenate and L-carnitine, in correcting the mutant phenotype. Pantothenate and L-carnitine treatment increased histone acetylation and partially corrected protein and transcriptomic expression patterns in mutant KAT6A cells. Furthermore, the cell bioenergetics of mutant cells was significantly improved. Our results suggest that pantothenate and L-carnitine can significantly improve the mutant phenotype in cellular models of KAT6A syndrome.This research was funded by FIS PI16/00786 (2016) and FIS PI19/00377 (2019) grants, the Ministerio de Sanidad, Spain, and the Fondo Europeo de Desarrollo Regional (FEDER Unión Europea), Spanish Ministry of Education, Culture and Sport. This activity has been co-financed by the European Regional Development Fund (ERDF) and by the Regional Ministry of Economic Transformation, Industry, Knowledge and Universities of the Junta de Andalucía, within the framework of the ERDF Andalusia operational program 2014–2020 Thematic objective “01-Reinforcement of research, technological development and innovation” through the reference research project CTS-5725 and PY18-850.Peer reviewe

    UPRmt activation improves pathological alterations in cellular models of mitochondrial diseases

    Get PDF
    Background: Mitochondrial diseases represent one of the most common groups of genetic diseases. With a prevalence greater than 1 in 5000 adults, such diseases still lack effective treatment. Current therapies are purely palliative and, in most cases, insufficient. Novel approaches to compensate and, if possible, revert mitochondrial dysfunction must be developed. Results: In this study, we tackled the issue using as a model fibroblasts from a patient bearing a mutation in the GFM1 gene, which is involved in mitochondrial protein synthesis. Mutant GFM1 fibroblasts could not survive in galactose restrictive medium for more than 3 days, making them the perfect screening platform to test several compounds. Tetracycline enabled mutant GFM1 fibroblasts survival under nutritional stress. Here we demonstrate that tetracycline upregulates the mitochondrial Unfolded Protein Response (UPR), a compensatory pathway regulating mitochondrial proteostasis. We additionally report that activation of UPR improves mutant GFM1 cellular bioenergetics and partially restores mitochondrial protein expression. Conclusions: Overall, we provide compelling evidence to propose the activation of intrinsic cellular compensatory mechanisms as promising therapeutic strategy for mitochondrial diseases.This work was supported by FIS PI16/00786 (2016) and FIS PI19/00377 (2019) grants, the Ministerio de Sanidad, Spain and the Fondo Europeo de Desarrollo Regional (FEDER Unión Europea), Spanish Ministry of Education, Culture and Sport. This activity has been co-financed by the European Regional Development Fund (ERDF) and by the Regional Ministry of Economic Transformation, Industry, Knowledge and Universities of the Junta de Andalucía, within the framework of the ERDF Andalusia operational program 2014–2020 Thematic objective "01—Reinforcement of research, technological development and innovation" through the reference research project CTS-5725 and PY18-850

    Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation

    Get PDF
    Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment. In the current work, we describe that fibroblasts derived from patients harbouring PANK2 mutations can reproduce many of the cellular pathological alterations found in the disease, such as intracellular iron and lipofuscin accumulation, increased oxidative stress, and mitochondrial dysfunction. Furthermore, mutant fibroblasts showed a characteristic senescent morphology. Treatment with pantothenate, the PANK2 enzyme substrate, was able to correct all pathological alterations in responder mutant fibroblasts with residual PANK2 enzyme expression. However, pantothenate had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of pantothenate in particular mutations was also confirmed in induced neurons obtained by direct reprograming of mutant fibroblasts. Our results suggest that pantothenate treatment can stabilize the expression levels of PANK2 in selected mutations. These results encourage us to propose our screening model as a quick and easy way to detect pantothenate-responder patients with PANK2 mutations. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of pantothenate.Instituto de Salud Carlos III FIS PI16/00786Junta de Andalucía CTS-5725, BIO-122Dirección General de Investigación Científica y Técnica BFU2015-64536-

    Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-Associated Neurodegeneration

    Get PDF
    23 Páginas.-- 17 FigurasPLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease.This work was supported by FIS PI16/00786 and PI19/00377 grants, Instituto de Salud Carlos III, Spain and Fondo Europeo de Desarrollo Regional (FEDR-Unión Europea), Proyectos de Investigación de Excelencia de la Junta de Andalucía CTS-5725 and PY18-850 and by AIDNAI (Association Internationale de Dystrophie Neuro Axonale Infantile), ENACH (Asociación de Enfermos de Neurodegeneración con Acumulación Cerebral de Hierro), AEPMI (Asociación de Enfermos de Patología Mitocondrial), FEDER (Federación Española de Enfermedades Raras) and Fundación MERK Salud. S. Povea-Cabello is a recipient of Ayudas para la Formación del Profesorado Universitario (FPU) from Ministerio de Universidades de España.Peer reviewe

    Generation of three human iPSC lines from PLAN (PLA2G6-associated neurodegeneration) patients

    No full text
    © 2021 The Authors.The human iPSC cell lines, PLANFiPS1-Sv4F-1 (RCPFi004-A), PLANFiPS2-Sv4F-1 (RCPFi005-A), PLANFiPS3-Sv4F-1 RCPFi006-A), derived from dermal fibroblast from three patients suffering PLAN (PLA2G6-associated neurodegeneration; MIM 256600) caused by mutations in the PLA2G6 gene, was generated by non-integrative reprogramming technology using OCT3/4, SOX2, CMYC and KLF4 reprogramming factors. The pluripotency was assessed by immunocytochemistry and RT-PCR. Differentiation capacity was verified in vitro. This iPSC line can be further differentiated toward affected cells to better understand molecular mechanisms of disease and pathophysiology.This work was supported by the Instituto de Salud Carlos III (ISCIII) - Subdireccion ´ General de Evaluacion ´ y Fomento de la Investigacion ´ [PI18/00147to CE and PI18/01319 to BPD], and by the Generalitat Valenciana [PROMETEO/2018/135], within the framework of the National R + D + I Plan co-funded with ERDF funds. CM has a CIPF-PhD fellowship [P.I.06/2017]. Part of the equipment employed in this work has been funded by Generalitat Valenciana and co-financed with ERDF funds (OP ERDF of Comunitat Valenciana 2014–2020)

    Generation of three human iPSC lines from PLAN (PLA2G6-associated neurodegeneration) patients

    Get PDF
    Neurodegeneració; MutacióNeurodegeneración; MutaciónNeurodegeneration; MutationThe human iPSC cell lines, PLANFiPS1-Sv4F-1 (RCPFi004-A), PLANFiPS2-Sv4F-1 (RCPFi005-A), PLANFiPS3-Sv4F-1 RCPFi006-A), derived from dermal fibroblast from three patients suffering PLAN (PLA2G6-associated neurodegeneration; MIM 256600) caused by mutations in the PLA2G6 gene, was generated by non-integrative reprogramming technology using OCT3/4, SOX2, CMYC and KLF4 reprogramming factors. The pluripotency was assessed by immunocytochemistry and RT-PCR. Differentiation capacity was verified in vitro. This iPSC line can be further differentiated toward affected cells to better understand molecular mechanisms of disease and pathophysiology.This work was supported by the Instituto de Salud Carlos III (ISCIII) - Subdirección General de Evaluación y Fomento de la Investigación [PI18/00147to CE and PI18/01319 to BPD], and by the Generalitat Valenciana [PROMETEO/2018/135], within the framework of the National R + D + I Plan co-funded with ERDF funds. CM has a CIPF-PhD fellowship [P.I.06/2017]. Part of the equipment employed in this work has been funded by Generalitat Valenciana and co-financed with ERDF funds (OP ERDF of Comunitat Valenciana 2014–2020)
    corecore